Datenbanksoftware oder Datenbankverwaltungssysteme können in Nischengruppen wie relationale und nicht-relationale Datenbanken kategorisiert werden. Beide Datenbankkategorien werden häufig zur Speicherung von Kundendaten, Produktinformationen, Finanzzahlen und anderen Geschäftsdaten verwendet.
Datenbankverwaltungssysteme verwalten und rufen Daten effizient ab, gewährleisten schnelle Abfragen, optimale Speicherformate und robuste Sicherheitsfunktionen. Diese Tools bieten automatisierte Backups, Echtzeit-Datenreplikation und Skalierbarkeit und unterstützen komplexe Abfragen, Datenintegrität, Mehrbenutzerzugriff und die Integration mit anderen Anwendungen. Datenbankverwaltungslösungen verfügen über Funktionen wie Echtzeitanalysen und erweiterte Sicherheitsprotokolle. Dies stellt sicher, dass Daten sicher sind und zur besseren Entscheidungsfindung und zur Optimierung von Abläufen genutzt werden können.
Beste Datenbanksoftware auf einen Blick:
Diese Softwarelösungen werden anhand eines Algorithmus bewertet, der die Kundenzufriedenheit und die Marktpräsenz basierend auf Bewertungen unserer Benutzer-Community berechnet. Für weitere Informationen siehe G2’s Research Scoring Methodology.
Database sofware provides a structured system for storing, managing, and retrieving this crucial data. There are a number of different database types, often used for specific purposes. Some store specific types of files, while others are just more easily scaled or integrated. All of them, though, are used to store various data types. This data can be used for internal business purposes, customer-facing applications, or simply storage for future reference.
Relational databases are traditional database tools used to align information into rows and columns. The structure allows for easy querying using SQL. Relational databases are used to store simple information, such as identities and contact information, but also complex information critical to business operations. They are highly scalable and can be stored on-premises, in the cloud, or through hybrid systems.
With document databases, users can store a wide variety of document types and sizes, efficiently organize files, search to locate a specific file, and maintain document security. Graph databases help do much of that but also visually map data connections, build a topographical schema, and query data using a variety of query languages. Object-oriented databases are used to store more complex data in the form of blocks which contain various attributes, metadata, and libraries.
There are a number of reasons to use databases, many of which are specific to your purpose or industry. The technical specifications needed for a potential database solution depend largely on what it is being used for. A business’ analytics warehouse needs to be optimized to store large amounts of data and run many complex queries. A web application backend is going to be built for swift reading and writing to support the necessary velocity of web traffic. The same database is not likely able to do both well. Knowing the intended purpose and possible future use cases will help you determine your requirements and narrow the scope of your search.
Applications – Database integration for applications can add significant functionality to a company’s offerings. This may come in the form of simple information access or providing real-time data to employees and users.
Analytics – Databases are the most common source of information used for various analytics purposes. Companies can store records of financial dealings or performance metrics and gain insights through in-depth analysis. They can also be used to process complex information, to monitor marketing effectiveness, or for virtually anything your company hopes to analyze.
Organization – Databases are often used to centralize data in a single, dedicated repository that makes retrieving information easy for business users. This can help create backend support for applications that is easily queryable and compatible with developers’ code. It can also improve business processes and information exchange by employing a single source of truth.
Database managers – Modern information technology has hit companies with a tidal wave of data. From user demographics or behavior to sales effectiveness and forecasting, untamed loads of data can be burdensome, complicated, and intimidating. But all hope is not lost. From database as a service (DBaaS) solutions to big data processing, technology is here to help. If you’re a database manager in search of new tools, the need usually stems from having too much data and not enough insights. Meanwhile, some database managers might have a system in place but not enough data to gain insights. There are tons of problems facing database managers. Luckily, there are just as many solutions available to help database managers gain control over the entire data lifecycle. Tools exist to gather, organize, integrate, and secure all of the data in your system.
Data scientists – Data scientists are tasked with sorting through massive data sets and turning their findings into actionable business insights. This complex task requires a unique combination of skills, including computer programming, business acumen, machine learning knowledge, and advanced statistics and mathematics. The wide range of required abilities means that there is not just one software that provides everything a data scientist needs to properly go about their day-to-day. Instead, data scientists need to build a stack of products that can help them deliver data insights. These tools provide such functionalities as storing data, accessing data, building models based on data sets, and even automating time-consuming processes.
Relational databases – Relational databases, or SQL databases, are used to store and manage data in traditional table formats by organizing information into rows and columns. These databases are some of the oldest and most commonly used database tools around today. The tools centralize data in a single, dedicated repository that makes retrieving information easy for business users. They can also create backend support for your applications that is easily queryable and compatible with developers’ code.
NoSQL databases – NoSQL databases are alternatives to traditional relational databases. They typically come in the form of graph databases, document databases, or object-oriented databases. Businesses use NoSQL databases for faster implementation times, greater flexibility, and faster data retrieval. Other types of NoSQL databases include relational database tools and desktop database tools. Developers who need an affordable database solution can look for free database software.
Non-native database management systems – Non-native database management software allows users outside a company to insert and retrieve data. Some people believe this enhances data by providing increased human knowledge. These tools provide such functionalities as storing data, accessing data, building models based on data sets, and even automating time-consuming processes.
NoSQL-Datenbanken verwenden einen nicht-relationalen Ansatz zur Speicherung von Daten, der Flexibilität und Skalierbarkeit für die Verwaltung großer Mengen an strukturierten, semi-strukturierten und unstrukturierten Daten bietet. Im Gegensatz zu traditionellen Datenbanken, die ein einziges Modell verwenden, nutzen NoSQL-Systeme verschiedene Datenmodelle, darunter Dokument-, Schlüssel-Wert-, Weitspalten- und Graphenmodelle. Jedes Modell ist auf unterschiedliche Anwendungen und Bedürfnisse zugeschnitten.
Dokumentdatenbanken, die JSON-ähnliche Dokumente verwenden, sind ideal für Content-Management und Analysen. Schlüssel-Wert-Datenbanken, mit einfachen Schlüssel-Wert-Paaren, sind hervorragend für Sitzungsmanagement und Caching geeignet. Objektorientierte Datenbanken speichern Daten als Objekte und integrieren sich nahtlos mit objektorientierten Programmiersprachen. Graphdatenbanken, die komplexe Beziehungen handhaben, sind perfekt für soziale Netzwerke und Logistik.
Wichtige Merkmale von NoSQL-Datenbanken sind horizontale Skalierbarkeit, hohe Leistung und Schema-Flexibilität. Sie unterstützen verteilte Speicherung und gewährleisten Verfügbarkeit und Zuverlässigkeit. Mit ihren vielfältigen Datenmodellen verwalten NoSQL-Datenbanken effizient Big-Data-Anwendungen und Echtzeitdienste, sodass Unternehmen skalieren und sich an veränderte Anforderungen anpassen können.
Beste NoSQL-Datenbanken auf einen Blick:
Diese Softwarelösungen werden mit einem Algorithmus bewertet, der die Kundenzufriedenheit und die Marktpräsenz basierend auf Bewertungen unserer Benutzer-Community berechnet. Für weitere Informationen, bitte schauen Sie sich G2’s Research Scoring Methodology an.
Wir können Ihnen helfen, die Lösung zu finden, die am besten zu Ihnen passt.