Best Software for 2025 is now live!

Parallel Processing

par Preethica Furtado
Parallel processing is a type of computer architecture where tasks are broken down into smaller parts and processed separately to ensure faster processing speeds and increase convenience.

What is parallel processing?

Parallel processing is defined as an architecture where processes are split into separate parts and each part is run simultaneously. By running the processes on multiple processor cores instead of a single one, the time taken to execute tasks is much lower. The main goal of parallel computing is to ensure that complex tasks are broken into simpler steps for easier processing driving better performance and problem-solving capabilities.

Different parts of the processes run on multiple processors, and these various parts communicate via shared memory. Once the various processes are run and completed, they are combined at the end to provide a single solution.

Parallel processing is an evolution to traditional computing. Traditional computing hit a wall when tasks were getting more complex and the processing times for these tasks would take very long. In addition, such tasks often consume more power and have poor communication and scaling issues. To prevent such issues, parallel processing was created to tackle them and, at the same time, ensure that processes were completed by using multiple cores.

Parallel processing forms a core concept for several machine learning algorithms and AI platforms. ML/AI algorithms were run traditionally on single processor environments, which led to performance bottlenecks. The introduction of parallel computing, however, allows users of data science and machine learning platforms to exploit the simultaneously executing threads that handle different processes and tasks.

Types of parallel processing

Depending on proprietary or open source, parallel computing has four different types listed below:

  • Bit-level parallelism: In this type of parallel computing, the processor word size is increased. The processes will have a lesser instruction set to perform operations on variables whose size is greater than the processor word size.
  • Instruction-level parallelism: In this type of parallel computing, the controlling hardware or software will decide different run-time instructions. For example, from a hardware perspective, the processor decides the run time for different instructions and which instruction needs to execute in parallel. From a software perspective, the software or compiler will decide which instructions need to work parallelly to ensure maximum performance.
  • Task parallelism: Several different tasks are run at the same time. Usually, these different tasks all have access to the same data to ensure no delays and smooth performance.
  • Superword-level parallelism: This type of parallelism uses inline code to create different tasks to run simultaneously.

Benefits of using parallel processing

A few benefits of parallel processing include:

  • Overall savings: Parallel processing helps users save on time and costs. The time to run one task is extremely high compared to running the same task on different processors at once. In addition to time savings, cost savings are a key benefit since it makes efficient use of resources. Although on a small scale it is expensive, managing billions of operations simultaneously reduces expenses significantly.
  • Dynamic nature: To solve more real-world problems and find efficient solutions, it is becoming increasingly important to focus on dynamic simulation and modeling to ensure different data points are available concurrently. Parallel processing offers the benefit of concurrency thereby supporting the dynamic nature of several problems.
  • Optimized resource utilization: In classical, traditional processing there is a possibility that not the entire hardware or software is being utilized while the rest remain idle. However, in the case of parallel processing, since the tasks are decoupled and run separately, the hardware is utilized much more in capacity to ensure faster processing times.
  • Managing complex data sets: As data evolves and grows, it is hard to ensure that data remains clean and usable. Data sets are becoming more complex, and traditional processing might not be the best way forward for managing large, unstructured, and complex data sets.

Impacts of using parallel processing

Some of the main impacts of parallel processing include:

  • Supercomputing capabilities: One of the key advantages of using parallel computing is it helps supercomputers solve highly complex tasks in a fraction of the time. Supercomputers are machines that work on the principle of parallel computing, by splitting a highly complex task into smaller ones and working on those smaller tasks. The ability of parallel processing helps supercomputers to work on several important problems such as climate change, testing models for healthcare, space, cryptology, chemistry, and numerous other fields.
  • Cross-functional vertical benefits: Parallel processing will have an impact on almost all industries, from cybersecurity to healthcare to retail and several others. By developing algorithms related to the problems faced by various industries, parallel processing provides the avenue for faster processing time and helps understand the benefits, costs, and limitations across industries.
  • Big data support: As the amount of data keeps expanding across numerous industries, it becomes increasingly difficult to manage these large data sets. Parallel processing is set to impact the big data explosion since it would shorten the time significantly for companies and enterprises to manage these data sets. In addition, the mix of structured and unstructured data will require a higher type of computing to process the massive amount of data—parallel processing will have a key impact here.

Parallel processing vs. serial processing

Serial processing is defined as the type of processing in which tasks are completed in a sequential order. Tasks are completed one at a time, instead of side by side as in the case of parallel processing. Some of the major differences between serial and parallel processing are as follows:

  • Serial processing uses a single processor whereas parallel processing uses multiple processors
  • Since there is only one processor in serial processing, the workload that is being processed is much higher by the one processor which is not the case in parallel processing
  • Serial processing takes more time to complete various tasks since they are completed one after the other whereas in parallel processing tasks are completed simultaneously
Preethica Furtado
PF

Preethica Furtado

Preethica is a Market Research Manager and Senior Market Research Analyst at G2 focused on the data and cloud management space. Prior to joining G2, Preethica spent three years in market research for enterprise systems, cloud forecasting, and workstations. She has written research reports for both the semiconductor and telecommunication industries. Her interest in technology led her to combine that with building a challenging career. She enjoys reading, writing blogs and poems, and traveling in her free time.

Logiciel Parallel Processing

Cette liste montre les meilleurs logiciels qui mentionnent le plus parallel processing sur G2.

La base de données Teradata gère facilement et efficacement des exigences de données complexes et simplifie la gestion de l'environnement d'entrepôt de données.

Amazon Redshift est un entrepôt de données rapide et entièrement géré qui permet d'analyser facilement et de manière rentable toutes vos données en utilisant le SQL standard et vos outils de Business Intelligence (BI) existants.

VMware Greenplum offre des analyses complètes et intégrées sur des données multi-structurées. Alimenté par l'un des optimisateurs de requêtes basés sur les coûts les plus avancés au monde, VMware Greenplum offre des performances de requêtes analytiques inégalées sur des volumes massifs de données.

Vertica propose une plateforme d'analyse basée sur un logiciel conçue pour aider les organisations de toutes tailles à monétiser les données en temps réel et à grande échelle.

SAP HANA Cloud est la fondation de données native du cloud de la plateforme technologique SAP Business, elle stocke, traite et analyse les données en temps réel à l'échelle du pétaoctet et converge plusieurs types de données dans un système unique tout en les gérant plus efficacement avec un stockage multitier intégré.

CUDA est une plateforme de calcul parallèle et un modèle de programmation qui permet des augmentations spectaculaires des performances de calcul en exploitant la puissance des GPU NVIDIA. Ces images étendent les images CUDA pour inclure la prise en charge d'OpenGL via libglvnd.

IBM DataStage est une plateforme ETL qui intègre des données à travers plusieurs systèmes d'entreprise. Elle exploite un cadre parallèle haute performance, disponible sur site ou dans le cloud.

Aide les clients à réduire les coûts informatiques et à offrir une qualité de service supérieure en permettant la consolidation sur des clouds de bases de données.

UiPath permet aux utilisateurs professionnels sans compétences en programmation de concevoir et d'exécuter l'automatisation des processus robotiques.

IBM Netezza Performance Server est un entrepôt de données et un appareil d'analyse conçu sur mesure, basé sur des normes, qui intègre base de données, serveur, stockage et analyses dans un système facile à gérer. Il est conçu pour l'analyse à grande vitesse de volumes de grandes données, s'étendant jusqu'aux pétaoctets.

Hadoop HDFS est un système de fichiers distribué, évolutif et portable écrit en Java.

Payez uniquement pour le temps de calcul que vous consommez.

SQL Server 2017 apporte la puissance de SQL Server à Windows, Linux et aux conteneurs Docker pour la première fois, permettant aux développeurs de créer des applications intelligentes en utilisant leur langage et environnement préférés. Découvrez des performances de pointe, soyez rassuré avec des fonctionnalités de sécurité innovantes, transformez votre entreprise avec l'IA intégrée, et fournissez des insights où que soient vos utilisateurs avec la BI mobile.

SnapLogic est le leader de l'intégration générative. En tant que pionnier de l'intégration dirigée par l'IA, la plateforme SnapLogic accélère la transformation numérique à travers l'entreprise et permet à chacun d'intégrer plus rapidement et plus facilement. Que vous automatisiez des processus métier, démocratisiez les données ou livriez des produits et services numériques, SnapLogic vous permet de simplifier votre pile technologique et d'aller plus loin dans votre entreprise. Des milliers d'entreprises à travers le monde comptent sur SnapLogic pour intégrer, automatiser et orchestrer le flux de données dans leur entreprise.

Parallel Data Warehouse offre une évolutivité jusqu'à des centaines de téraoctets et des performances élevées grâce à une architecture de traitement massivement parallèle.

Apache Kafka est une plateforme de traitement de flux open-source développée par la Apache Software Foundation, écrite en Scala et Java.

IBM InfoSphere Master Data Management (MDM) gère tous les aspects de vos données d'entreprise critiques, quel que soit le système ou le modèle, et les livre à vos utilisateurs d'applications dans une vue unique et fiable. Fournit des informations exploitables, un alignement instantané sur la valeur commerciale et la conformité avec la gouvernance des données, les règles et les politiques à travers l'entreprise.

Apache ActiveMQ est un serveur de messagerie et de modèles d'intégration open source populaire et puissant.

IBM® Db2® est la base de données qui offre des solutions à l'échelle de l'entreprise pour gérer des charges de travail à haut volume. Elle est optimisée pour offrir des performances de pointe tout en réduisant les coûts.

Effort de logiciel libre axé sur la communauté, centré sur l'objectif de fournir une plateforme de base riche pour que les communautés open source puissent se développer.