Best Software for 2025 is now live!

Parallel Processing

por Preethica Furtado
Parallel processing is a type of computer architecture where tasks are broken down into smaller parts and processed separately to ensure faster processing speeds and increase convenience.

What is parallel processing?

Parallel processing is defined as an architecture where processes are split into separate parts and each part is run simultaneously. By running the processes on multiple processor cores instead of a single one, the time taken to execute tasks is much lower. The main goal of parallel computing is to ensure that complex tasks are broken into simpler steps for easier processing driving better performance and problem-solving capabilities.

Different parts of the processes run on multiple processors, and these various parts communicate via shared memory. Once the various processes are run and completed, they are combined at the end to provide a single solution.

Parallel processing is an evolution to traditional computing. Traditional computing hit a wall when tasks were getting more complex and the processing times for these tasks would take very long. In addition, such tasks often consume more power and have poor communication and scaling issues. To prevent such issues, parallel processing was created to tackle them and, at the same time, ensure that processes were completed by using multiple cores.

Parallel processing forms a core concept for several machine learning algorithms and AI platforms. ML/AI algorithms were run traditionally on single processor environments, which led to performance bottlenecks. The introduction of parallel computing, however, allows users of data science and machine learning platforms to exploit the simultaneously executing threads that handle different processes and tasks.

Types of parallel processing

Depending on proprietary or open source, parallel computing has four different types listed below:

  • Bit-level parallelism: In this type of parallel computing, the processor word size is increased. The processes will have a lesser instruction set to perform operations on variables whose size is greater than the processor word size.
  • Instruction-level parallelism: In this type of parallel computing, the controlling hardware or software will decide different run-time instructions. For example, from a hardware perspective, the processor decides the run time for different instructions and which instruction needs to execute in parallel. From a software perspective, the software or compiler will decide which instructions need to work parallelly to ensure maximum performance.
  • Task parallelism: Several different tasks are run at the same time. Usually, these different tasks all have access to the same data to ensure no delays and smooth performance.
  • Superword-level parallelism: This type of parallelism uses inline code to create different tasks to run simultaneously.

Benefits of using parallel processing

A few benefits of parallel processing include:

  • Overall savings: Parallel processing helps users save on time and costs. The time to run one task is extremely high compared to running the same task on different processors at once. In addition to time savings, cost savings are a key benefit since it makes efficient use of resources. Although on a small scale it is expensive, managing billions of operations simultaneously reduces expenses significantly.
  • Dynamic nature: To solve more real-world problems and find efficient solutions, it is becoming increasingly important to focus on dynamic simulation and modeling to ensure different data points are available concurrently. Parallel processing offers the benefit of concurrency thereby supporting the dynamic nature of several problems.
  • Optimized resource utilization: In classical, traditional processing there is a possibility that not the entire hardware or software is being utilized while the rest remain idle. However, in the case of parallel processing, since the tasks are decoupled and run separately, the hardware is utilized much more in capacity to ensure faster processing times.
  • Managing complex data sets: As data evolves and grows, it is hard to ensure that data remains clean and usable. Data sets are becoming more complex, and traditional processing might not be the best way forward for managing large, unstructured, and complex data sets.

Impacts of using parallel processing

Some of the main impacts of parallel processing include:

  • Supercomputing capabilities: One of the key advantages of using parallel computing is it helps supercomputers solve highly complex tasks in a fraction of the time. Supercomputers are machines that work on the principle of parallel computing, by splitting a highly complex task into smaller ones and working on those smaller tasks. The ability of parallel processing helps supercomputers to work on several important problems such as climate change, testing models for healthcare, space, cryptology, chemistry, and numerous other fields.
  • Cross-functional vertical benefits: Parallel processing will have an impact on almost all industries, from cybersecurity to healthcare to retail and several others. By developing algorithms related to the problems faced by various industries, parallel processing provides the avenue for faster processing time and helps understand the benefits, costs, and limitations across industries.
  • Big data support: As the amount of data keeps expanding across numerous industries, it becomes increasingly difficult to manage these large data sets. Parallel processing is set to impact the big data explosion since it would shorten the time significantly for companies and enterprises to manage these data sets. In addition, the mix of structured and unstructured data will require a higher type of computing to process the massive amount of data—parallel processing will have a key impact here.

Parallel processing vs. serial processing

Serial processing is defined as the type of processing in which tasks are completed in a sequential order. Tasks are completed one at a time, instead of side by side as in the case of parallel processing. Some of the major differences between serial and parallel processing are as follows:

  • Serial processing uses a single processor whereas parallel processing uses multiple processors
  • Since there is only one processor in serial processing, the workload that is being processed is much higher by the one processor which is not the case in parallel processing
  • Serial processing takes more time to complete various tasks since they are completed one after the other whereas in parallel processing tasks are completed simultaneously
Preethica Furtado
PF

Preethica Furtado

Preethica is a Market Research Manager and Senior Market Research Analyst at G2 focused on the data and cloud management space. Prior to joining G2, Preethica spent three years in market research for enterprise systems, cloud forecasting, and workstations. She has written research reports for both the semiconductor and telecommunication industries. Her interest in technology led her to combine that with building a challenging career. She enjoys reading, writing blogs and poems, and traveling in her free time.

Software de Parallel Processing

Esta lista muestra el software principal que menciona parallel processing más en G2.

La base de datos Teradata maneja fácilmente y eficientemente requisitos de datos complejos y simplifica la gestión del entorno del almacén de datos.

Amazon Redshift es un almacén de datos rápido y completamente gestionado que facilita y reduce el costo de analizar todos tus datos utilizando SQL estándar y tus herramientas de Inteligencia de Negocios (BI) existentes.

VMware Greenplum ofrece análisis integrales e integrados en datos multiestructurados. Impulsado por uno de los optimizadores de consultas basados en costos más avanzados del mundo, VMware Greenplum ofrece un rendimiento de consulta analítica inigualable en volúmenes masivos de datos.

Vertica ofrece una plataforma de análisis basada en software diseñada para ayudar a organizaciones de todos los tamaños a monetizar datos en tiempo real y a gran escala.

SAP HANA Cloud es la base de datos nativa en la nube de SAP Business Technology Platform, almacena, procesa y analiza datos en tiempo real a escala de petabytes y converge múltiples tipos de datos en un solo sistema mientras los gestiona de manera más eficiente con almacenamiento multinivel integrado.

CUDA es una plataforma de computación paralela y un modelo de programación que permite aumentos dramáticos en el rendimiento de la computación al aprovechar el poder de las GPU de NVIDIA. Estas imágenes extienden las imágenes de CUDA para incluir soporte de OpenGL a través de libglvnd.

IBM DataStage es una plataforma ETL que integra datos a través de múltiples sistemas empresariales. Aprovecha un marco paralelo de alto rendimiento, disponible en las instalaciones o en la nube.

Ayuda a los clientes a reducir los costos de TI y a ofrecer un servicio de mayor calidad al permitir la consolidación en nubes de bases de datos.

UiPath permite a los usuarios empresariales sin habilidades de codificación diseñar y ejecutar la automatización de procesos robóticos.

IBM Netezza Performance Server es un dispositivo de almacenamiento de datos y análisis basado en estándares, diseñado específicamente, que integra base de datos, servidor, almacenamiento y análisis en un sistema fácil de gestionar. Está diseñado para el análisis de alta velocidad de grandes volúmenes de datos, escalando hasta los petabytes.

Hadoop HDFS es un sistema de archivos distribuido, escalable y portátil escrito en Java.

Paga solo por el tiempo de cómputo que consumes.

SQL Server 2017 lleva el poder de SQL Server a Windows, Linux y contenedores Docker por primera vez, permitiendo a los desarrolladores construir aplicaciones inteligentes utilizando su lenguaje y entorno preferidos. Experimente un rendimiento líder en la industria, tenga la tranquilidad con características de seguridad innovadoras, transforme su negocio con IA incorporada y entregue información dondequiera que estén sus usuarios con BI móvil.

SnapLogic es el líder en integración generativa. Como pionero en integración guiada por IA, la Plataforma SnapLogic acelera la transformación digital en toda la empresa y empodera a todos para integrar más rápido y fácilmente. Ya sea que estés automatizando procesos empresariales, democratizando datos o entregando productos y servicios digitales, SnapLogic te permite simplificar tu pila tecnológica y llevar tu empresa más lejos. Miles de empresas en todo el mundo confían en SnapLogic para integrar, automatizar y orquestar el flujo de datos a través de sus negocios.

Parallel Data Warehouse ofrece escalabilidad a cientos de terabytes y alto rendimiento a través de una arquitectura de procesamiento masivamente paralelo.

Apache Kafka es una plataforma de procesamiento de flujos de código abierto desarrollada por la Apache Software Foundation, escrita en Scala y Java.

IBM InfoSphere Master Data Management (MDM) gestiona todos los aspectos de sus datos empresariales críticos, sin importar qué sistema o modelo, y los entrega a sus usuarios de aplicaciones en una vista única y confiable. Proporciona información procesable, alineación instantánea con el valor empresarial y cumplimiento con la gobernanza de datos, reglas y políticas en toda la empresa.

Apache ActiveMQ es un servidor de mensajería y patrones de integración de código abierto popular y poderoso.

IBM® Db2® es la base de datos que ofrece soluciones a nivel empresarial para manejar cargas de trabajo de alto volumen. Está optimizada para ofrecer un rendimiento líder en la industria mientras reduce costos.

Esfuerzo de software libre impulsado por la comunidad enfocado en el objetivo de proporcionar una plataforma base rica para que las comunidades de código abierto construyan sobre ella.