Die unten aufgeführten Künstliche Neuronale Netzwerk-Software-Lösungen sind die häufigsten Alternativen, die von Benutzern und Reviewern mit Open Neural Network Exchange (ONNX) verglichen werden. Andere wichtige Faktoren, die bei der Recherche von Alternativen zu Open Neural Network Exchange (ONNX) zu berücksichtigen sind, beinhalten Zuverlässigkeit und Benutzerfreundlichkeit. Die beste Gesamtalternative zu Open Neural Network Exchange (ONNX) ist Tune AI. Andere ähnliche Apps wie Open Neural Network Exchange (ONNX) sind Keras, H2O, NVIDIA Deep Learning GPU Training System (DIGITS), und AIToolbox. Open Neural Network Exchange (ONNX) Alternativen finden Sie in Künstliche Neuronale Netzwerk-Software, aber sie könnten auch in Maschinelles Lernsoftware oder Software zur Operationalisierung großer Sprachmodelle (LLMOps) sein.
Tune AI ist eine Unternehmens-Chat-Anwendung, die in Ihrer Cloud oder vor Ort als verwalteter Dienst betrieben wird und die Leistungsfähigkeit generativer KI-Modelle nutzt, ohne dass Ihre Daten jemals Ihre Umgebung verlassen.
H2O ist ein Werkzeug, das es jedem ermöglicht, maschinelles Lernen und prädiktive Analysen einfach anzuwenden, um die heutigen herausforderndsten Geschäftsprobleme zu lösen. Es kombiniert die Kraft hochentwickelter Algorithmen, die Freiheit von Open Source und die Kapazität einer wirklich skalierbaren In-Memory-Verarbeitung für Big Data auf einem oder mehreren Knoten.
NVIDIA Deep Learning GPU Training System (DIGITS) tiefes Lernen für Datenwissenschaft und Forschung, um schnell tiefe neuronale Netzwerke (DNN) für Bildklassifizierungs- und Objekterkennungsaufgaben zu entwerfen, unter Verwendung der Visualisierung des Netzwerkverhaltens in Echtzeit.
AIToolbox ist eine Sammlung von KI-Modulen, die in Swift geschrieben sind: Graphen/Bäume, Lineare Regression, Support-Vektor-Maschinen, Neuronale Netze, PCA, KMeans, Genetische Algorithmen, MDP, Mischung von Gaussians, Logistische Regression.
Microsoft Cognitive Toolkit ist ein Open-Source-Toolkit in kommerzieller Qualität, das Benutzer befähigt, die Intelligenz in riesigen Datensätzen durch Deep Learning zu nutzen, indem es kompromisslose Skalierung, Geschwindigkeit und Genauigkeit mit kommerzieller Qualität und Kompatibilität mit den bereits verwendeten Programmiersprachen und Algorithmen bietet.
TFlearn ist eine modulare und transparente Deep-Learning-Bibliothek, die auf TensorFlow aufbaut und eine höherstufige API für TensorFlow bereitstellt, um Experimente zu erleichtern und zu beschleunigen, während sie vollständig transparent und kompatibel bleibt.
Vorkonfigurierte und optimierte Container für Deep-Learning-Umgebungen.
Die AWS Deep Learning AMIs sind darauf ausgelegt, Datenwissenschaftler, maschinelles Lernen-Praktiker und Forschungsspezialisten mit der Infrastruktur und den Werkzeugen auszustatten, um die Arbeit im Bereich des Deep Learnings in der Cloud in jedem Maßstab zu beschleunigen.